Role Of 3-D Bioprinting In Forensics- A Review

Authors

  • Beryl Rachel J Research officer, Celutron Innovations Pvt Ltd, Chennai, India
  • Gowthami Jawahar CEO and Founder, Celutron Innovations Pvt Ltd, Chennai, India
  • Deborah Percy Head of Research, Celutron Innovations Pvt Ltd, Chennai, India
  • Samuelraj Chrysolite Chief Technical Officer, Celutron Innovations Pvt Ltd, Chennai, India

DOI:

https://doi.org/10.56501/intjforensicodontol.v8i2.967

Keywords:

Gender Determination, Gonial Angle, Mental Foramen, Panoramic Radiographs, Lateral Cephalogram.

Abstract

3D bio-printing involves directly depositing a mixture of high-density living cells and a bio-ink is printed out in an overlapping process by the 3D bio-printer, which is under the design and control of computer. The term bioprinting describes the simultaneous positioning of biomaterials and living cells in a prescribed layer by layer stacking organization to create engineered tissue and organs. The process of Freeform Reversible Embedding of Suspended Hydrogels (FRESH) is a printing method that extrudes bio inks into a yield-stress support bath that holds the bio inks in place until they cure. In-situ 3D bioprinting is a kind of bio-printing which is directly printed onto or into the damaged tissue or organ. This review specifically focuses the current development of FRESH bioprinting and in situ bioprinting and the various challenges and legal considerations in this field.

References

Lee, E. J., Kasper, F. K., & Mikos, A. G. (2014). Biomaterials for tissue engineering. Annals of biomedical engineering, 42(2), 323–337. https://doi.org/10.1007/s10439-013-0859-6

Cui, H., Nowicki, M., Fisher, J. P., & Zhang, L. G. (2017). 3D Bioprinting for Organ Regeneration. Advanced healthcare materials, 6(1), 10.1002/adhm.201601118. https://doi.org/10.1002/adhm.201601118

Ji, S., & Guvendiren, M. (2017). Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Frontiers in bioengineering and biotechnology, 5, 23. https://doi.org/10.3389/fbioe.2017.00023

Shiwarski, D. J., Hudson, A. R., Tashman, J. W., & Feinberg, A. W. (2021). Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL bioengineering, 5(1), 010904. https://doi.org/10.1063/5.0032777

Tripathi, S., Mandal, S. S., Bauri, S., & Maiti, P. (2022). 3D bioprinting and its innovative approach for biomedical applications. MedComm, 4(1), e194. https://doi.org/10.1002/mco2.194

Moroni, L., Burdick, J. A., Highley, C., Lee, S. J., Morimoto, Y., Takeuchi, S., & Yoo, J. J. (2018). Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature reviews. Materials, 3(5), 21–37. https://doi.org/10.1038/s41578-018-0006-y

Shams E, Barzad MS, Mohamadnia S, Tavakoli O, Mehrdadfar A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. Journal of Biomaterials Applications. 2022;37(2):355-372. doi:10.1177/08853282221085690

Gungor-Ozkerim, P. S., , Inci, I., , Zhang, Y. S., , Khademhosseini, A., , & Dokmeci, M. R., (2018). Bioinks for 3D bioprinting: an overview. Biomaterials science, 6(5), 915–946. https://doi.org/10.1039/c7bm00765e

Papaioannou, T. G., Manolesou, D., Dimakakos, E., Tsoucalas, G., Vavuranakis, M., & Tousoulis, D. (2019). 3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication. Acta Cardiologica Sinica, 35(3), 284–289. https://doi.org/10.6515/ACS.201905_35(3).20181115A

Ma, Y., Ding, P., Li, L. et al. Three-dimensional printing for heart diseases: clinical application review. Bio-des. Manuf. 4, 675–687 (2021). https://doi.org/10.1007/s42242-021-00125-8

Hinton T. J., Hudson A., Pusch K., Lee A., and Feinberg A. W., ACS Biomater. Sci. Eng. 2(10), 1781– 1786 (2016). 10.1021/acsbiomaterials.6b00170 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Emiroglu, D. B., Bekcic, A., Dranseikiene, D., Zhang, X., Zambelli, T., deMello, A. J., & Tibbitt, M. W. (2022). Building block properties govern granular hydrogel mechanics through contact deformations. Science advances, 8(50), eadd8570. https://doi.org/10.1126/sciadv.add8570

MacAdam, A., Chaudry, E., McTiernan, C. D., Cortes, D., Suuronen, E. J., & Alarcon, E. I. (2022). Development of in situ bioprinting: A mini review. Frontiers in bioengineering and biotechnology, 10, 940896. https://doi.org/10.3389/fbioe.2022.940896

Di Bella C., Duchi S., O'Connell C. D., Blanchard R., Augustine C., Yue Z., et al. (2018). In situ handheld three-dimensional bioprinting for cartilage regeneration. J. Tissue Eng. Regen. Med. 12, 611–621. 10.1002/term.2476

Cheng R. Y., Eylert G., Gariepy J. M., He S., Ahmad H., Gao Y., et al. (2020). Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns. Biofabrication 12, 025002. 10.1088/1758-5090/ab6413

Ying G., Manriquez J., Wu D., Zhang J., Jiang N., Maharjan S., et al. (2020). An open-source handheld extruder loaded with pore forming bioink for in situ wound dressing. Mat. Today Bio 8, 100074. 10.1016/j.mtbio.2020.100074

Ma K., Zhao T., Yang L., Wang P., Jin J., Teng H., et al. (2020). Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. J. Adv. Res. 23, 123–132. 10.1016/j.jare.2020.01.010

Zhou C., Yang Y., Wang J., Wu Q., Gu Z., Zhou Y., et al. (2021). Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072. 10.1038/s41467-021-25386-w

Keriquel V., Guillemot F., Arnault I., Guillotin B., Miraux S., Amedee J., et al. (2010). In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication 2, 014101. 10.1088/1758-5082/2/1/014101

20. Skardal A., Mack D., Kapetanovic E., Atala A., Jackson J. D., Yoo J., et al. (2012). Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1, 792–802. 10.5966/sctm.2012-0088

Gapiński T., Lenartowicz K., Galas P., Gonsior M., Ricotti L. (2020). First tests of extrusion process using arthroscopic 3D bioprinting handheld tools prototypes. Eng. Biomaterials 23, 60.

Chaudhary RK, Doggalli N, Chandrakant H V, Patil K. Current and evolving applications of threedimensional printing in forensic odontology: A review. Int J Forensic Odontol [serial online] 2018 [cited 2023 Sep 18];3:59-65. Available from: https://www.ijofo.org/text.asp?2018/3/2/59/245311

Downloads

Published

2024-01-09

How to Cite

Beryl Rachel J, Gowthami Jawahar, Deborah Percy, & Samuelraj Chrysolite. (2024). Role Of 3-D Bioprinting In Forensics- A Review. International Journal of Forensic Odontology, 8(2), 30–41. https://doi.org/10.56501/intjforensicodontol.v8i2.967