Innovations in Oral Pathology Laboratory - A Mini Review

Main Article Content

Karthikeyan Ramalingam,

Abstract

Over the past two decades, a multitude of technological advancements have been integrated into histopathology laboratories, offering tools to enhance standardization and ensure occupational safety. Digital tracking plays a central role in guiding the entire process, from labeling cassettes and slides to the final stages of generating whole slide images, and storage of tissue blocks and tissue sections.


Versatile equipment has effectively replaced time-consuming manual tasks, which were susceptible to errors and material loss. Currently, collaborative robots are assuming responsibilities once exclusively carried out by humans. The emergence of these novel technologies is anticipated to help in improving oral pathology laboratory practices.

Article Details

How to Cite
Karthikeyan Ramalingam,. (2023). Innovations in Oral Pathology Laboratory - A Mini Review. International Journal of Head and Neck Pathology, 6(2), 1–5. https://doi.org/10.56501/intjheadneckpathol.v6i1.914
Section
Articles

References

Herbst H, Rüdiger T, Hofmann C. Automatisierung und Einsatz von Robotern im Pathologielabor [Automation and application of robotics in the pathology laboratory]. Pathology. 2022 May;43(3):210-217. German. doi: 10.1007/s00292-022-01073-5. Epub 2022 Apr 24. PMID: 35462567.

Karthikeyan Ramalingam., Use of Artificial Intelligence In Histopathological Interpretation - A Mini Review. Int J Histopathol Interpret 2023; 12(1):34-39 DOI: https://doi.org/10.56501/intjhistopatholinterpret.v12i1.883

Thurow K, Gu X, Göde B, Roddelkopf T, Fleischer H, Stoll N, Neubert S. Integrating Mobile Robots into Automated Laboratory Processes: A Suitable Workflow Management System. SLAS Technol. 2021 Apr;26(2):232-235. doi: 10.1177/2472630320967620. Epub 2020 Nov 12. PMID: 33181045.

Han Y, Thomas CT, Wennersten SA, Lau E, Lam MPY. Shotgun Proteomics Sample Processing Automated by an Open-Source Lab Robot. J Vis Exp. 2021 Oct 28;(176):10.3791/63092. doi: 10.3791/63092. PMID: 34779440; PMCID: PMC8986016.

Sandra S, Ramalingam K, Ramani P. Laboratory Errors In Pathology And Troubleshooting Methods. Journal of Pharmaceutical Negative Results ¦ Volume 13 ¦ Special Issue 7 ¦ 2022 272. DOI: 10.47750/pnr.2022.13.S07.037

Tegally H, San JE, Giandhari J, de Oliveira T. Unlocking the efficiency of genomics laboratories with robotic liquid-handling. BMC Genomics. 2020 Oct 20;21(1):729. doi: 10.1186/s12864-020-07137-1. PMID: 33081689; PMCID: PMC7576741.

Neubert S, Göde B, Gu X, Stoll N, Thurow K. Potential of Laboratory Execution Systems (LESs) to Simplify the Application of Business Process Management Systems (BPMSs) in Laboratory Automation. SLAS Technol. 2017 Apr;22(2):206-216. doi: 10.1177/2211068216680331. Epub 2016 Dec 13. PMID: 27908978.

Yasothkumar D, Ramalingam K, Ramani P, et al. (August 24, 2023) Machine Learning in the Detection of Oral Lesions With Clinical Intraoral Images. Cureus 15(8): e44018. DOI 10.7759/cureus.44018

Wolf Á, Wolton D, Trapl J, Janda J, Romeder-Finger S, Gatternig T, Farcet JB, Galambos P, Széll K. Towards robotic laboratory automation Plug & Play: The "LAPP" framework. SLAS Technol. 2022 Feb;27(1):18-25. doi: 10.1016/j.slast.2021.11.003. Epub 2021 Dec 7. PMID: 35058216.

Rupp N, Peschke K, Köppl M, Drissner D, Zuchner T. Establishment of low-cost laboratory automation processes using AutoIt and 4-axis robots. SLAS Technol. 2022 Oct;27(5):312-318. doi: 10.1016/j.slast.2022.07.001. Epub 2022 Jul 10. PMID: 35830957.