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Review Article

intROductiOn

The	word	ceramic	is	derived	from	the	Greek	word	“keramos”	
which	 literally	means	 “burnt	 stuff”	 but	which	has	 come	 to	
mean	more	specifically	as	a	material	produced	by	burning	or	
firing.[1]	Since	the	first	use	of	porcelain	to	make	a	complete	
denture	 by	Alexis	Duchateau	 in	 1774,	 numerous	 dental	
porcelain	compositions	have	been	developed.	French	Dentist	
De	Chemant	patented	the	first	porcelain	tooth	material	in	1789.	
Dr.	Charles	Land	patented	the	first	Ceramic	crowns	in	1903.[2]	
The	use	of	all‑ceramic	prosthesis	in	restorative	treatments	has	
become	popular	and	many	of	these	restorations	can	be	fabricated	
by	both	 traditional	 laboratory	methods	 and	 computer‑aided	
design	 and	 computer‑aided	manufacturing	 (CAD/CAM)	
machination	[Table	1].[3,4]	The	traditional	methods	of	ceramic	
fabrication	 have	 been	 described	 to	 be	 time‑consuming,	
technique	sensitive,	and	rather	unpredictable	due	to	the	many	
variables	 present	which	 affect	 the	 outcome.	 CAD/CAM	
might	be	a	good	alternative.[3]	The	advances	 in	CAD/CAM	
technology	 are	 instrumental	 in	 the	 research	 and	 for	 the	
development	of	high‑strength	polycrystalline	ceramics	such	
as	 stabilized	zirconium	dioxide	which	could	not	have	been	
practically	 processed	 by	 traditional	 laboratory	methods.[5]	
These	materials	 have	made	possible	 the	use	of	 all‑ceramic	
crowns	and	short	span	bridges	in	the	posterior	load‑bearing	
regions	of	the	jaws.[2,6,7]	The	present	review	gives	an	overview	

on	the	different	materials	available	in	ceramics	used	in	dental	
CAD/CAM	technology.

glAss ceRAmics

Mica‑Based	Ceramics:	The	mica	minerals	 are	 a	 group	 of	
sheet	 silicate	 (so‑called	 phyllosilicate)	minerals	 consisting	
of	 varying	 highly	 complexly	 configured	 compounds	 of	Si,	
K,	Na,	Ca,	F,	O,	Fe,	and	Al.[8]	Dicor	was	launched	in	1984.	It	
was	developed	from	a	formulation	of	low	thermal	expansion	
ceramic	 used	 for	 cookware	 by	Corning	Glass	Works	 and	
marketed	by	DENTSPLY	International.[9]	Further	development	
of	this	material	resulted	in	the	introduction	of	Dicor	MGC,	a	
machinable	glass	ceramic.	This	was	a	higher	quality	product	
containing	70%	by	volume	 tetrasilicicfluormica	which	was	
crystallized	by	the	manufacturers	and	provided	as	CAD/CAM	
blanks	 or	 ingot.	The	mechanical	 properties	 of	MGC	were	
similar	to	Dicor	glass	ceramic	although	it	exhibited	reduced	
translucency.[10]	Although	both	Dicor™	and	Dicor™	MGC	
were	 very	well	 studied,	 the	materials	 are	 no	 longer	 in	 the	
market.
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feldspAtHic ceRAmics

The	traditional	type	of	dental	porcelain	is	based	on	feldspar	
and	comprises	of	a	tectosilicate	mineral	feldspar	(KAlSi3O8),	
quartz	 (SiO2),	 and	 kaolin	 (Al2O3·2SiO2·2H2O).	The	 first	
CAD/CAM‑produced	 inlay	was	 fabricated	 in	 1985	 using	
a	 ceramic	 block	 comprising	 of	 fine	 grain	 feldspathic	
ceramic	 (Vita™	Mark	 I,	Vita	Zahnfabrik,	Bad	Sackingen,	
Germany). [11]	 Vita™	Mark	 II	 (Vita	 Zahnfabrik,	 Bad	
Sackingen,	Germany)	 introduced	 specifically	 for	CEREC	
(Cerec™	1‑Siemens	GmbH,	Bensheim,	Germany)	 in	 1991	
exhibited	better	mechanical	properties	with	a	reported	flexural	
strength	 from	 about	 100	MPa‑160	MPa	when	 glazed.[3,12]	
Vita™	Mark	 II	blocks	are	made	of	materials	 similar	 to	 the	
conventional	feldspathic	ceramics	but	produced	in	a	different	
process	 known	 as	 extrusion	molding.[13]	Vita™	Mark	 II	 is	
monochromatic	but	available	in	multiple	shades.	The	newer	
Vitablocs™	TriLuxe™,	Triluxe™	Forte,	 and	RealLife™	
blocks	(Vita	Zahnfabrik,	Bad	Sackingen,	Germany)	contain	
multishade	layers	and	offer	a	gradient	of	color	and	translucency.	
These	 feldspathic	ceramic	materials	have	excellent	esthetic	
properties	and	have	been	recommended	for	use	in	fabricating	
veneers,	inlays/onlays,[14,15]	and	single	anterior	restorations.[16]	
The	material,	however,	is	not	considered	to	be	strong	enough	
for	posterior	load‑bearing	areas.[17]

leucite‑ReinfORced ceRAmics

Leucite‑reinforced	feldspathic	porcelain	contains	45%	by	volume	
tetragonal	leucite	which	acts	as	a	reinforcing	phase.[18]	The	thermal	
contraction	mismatch	between	leucite	(22‑25	×	10‑6.°C‑1)	and	
the	glassy	matrix	(8	×	10–6.°C‑1)	results	in	the	development	
of	 tangential	 compressive	 stresses	 in	 the	 glass	 around	 the	
leucite	crystals	which	can	act	as	crack	deflectors	with	increased	
resistance	 to	 crack	 propagation.[18]	 ProCAD™	 (Ivoclar	
Vivadent,	Schaan,	Liechtenstein)	was	 introduced	 in	1998	 to	
be	used	with	the	CEREC™	in	LAB	(Sirona	Dental	Systems,	
Bensheim,	Germany).	It	is	a	leucite‑reinforced	ceramic	similar	
in	 structure	 to	 the	heat‑pressed	ceramic	Empress™	(Ivoclar	
Vivadent).[19]	Empress™	CAD	(Ivoclar	Vivadent),	introduced	
in	 2006,	 is	 the	 successor	 to	Empress™	ProCAD.	 Its	main	
difference	is	in	the	optimizing	manufacturing	procedure,	and	
it	has	about	45%	leucite	with	a	finer	particle	size	of	about	1–5	
μm	that	helps	resist	machining	damages.[20]	It	was	developed	for	
chairside	single	unit	restorations	and	has	a	flexural	strength	of	
about	160	MPa.	Clinically,	it	is	recommended	for	single	tooth	
restorations	and	is	available	in	high	translucency	(Empress™	
CAD	HT),	 low	 translucency	 (Empress™	CAD	LT),	 and	
polychromatic	 (Empress™	CAD	Multi)	 blocks.	The	milled	
restorations,	can,	in	the	next	step,	be	stained	and	glazed.	Another	
example	in	this	category	is	Paradigm™	C	(3M	ESPE,	Seefeld,	
Germany).

Table 1: Brands, composition, and manufacturers of ceramic materials with recommended clinical indications

Core material System Manufacturing 
techniques

Clinical indications

Glass	ceramic
Feldspathic	
(SiO2‑Al2O3‑Na2O‑K2O)

Vitablocs	Mark	II	(VITA	Zahnfabrik,	Bad	Sackingen,	
Germany)

Milled Onlays,	3/4	crowns,	crowns,	veneers

VITA	TriLuxe	Bloc	(VITA	Zahnfabrik) Milled Onlays,	3/4	crowns,	crowns,	veneers
Vitablocs	Esthetic	Line	(VITA	Zahnfabrik) Milled Anterior	crowns,	veneers

Leucite	
(SiO2‑Al2O3‑K2O)

IPS	Empress	(Ivoclar	Vivadent) Heat	pressed Onlays,	3/4	crowns,	crowns
Optimal	Pressable	Ceramic	(Jeneric	Pentron,	
Wallingford,	Conn)

Heat	pressed Onlays,	3/4	crowns,	crowns

IPS	ProCAD	(Ivoclar	Vivadent) Milled Onlays,	3/4	crowns,	crowns
Lithium‑disilicate	
(SiO2‑Li2O)

IPS	Empress	2	(Ivoclar	Vivadent,	Schaan,	Liechtenstein) Heat	pressed Crowns,	anterior	FPDP
IPS	e.max	Press	(Ivoclar	Vivadent) Heat	pressed Onlays,	3/4	crowns,	crowns,	FPDP
IPS™	e.max	CAD	(Ivoclar	Vivadent) Milled Inlays,	onlays,	veneers,	anterior	and	

posterior	crowns
Alumina
Aluminum‑oxide	
(Al2O3)

In‑Ceram	Alumina	(VITA	Zahnfabrik) Slip‑cast,	milled Crowns,	FPDP
In‑Ceram	Spinell	(VITA	Zahnfabrik) Milled Crowns
Synthoceram	(CICERO	Dental	Systems,	Hoorn,	The	
Netherlands)

Milled Onlays,	3/4	crowns,	crowns

In‑Ceram	Zirconia	(VITA	Zahnfabrik) Slip‑cast,	milled Crowns,	posterior	FPDP
Procera	(Nobel	Biocare	AB,	Goteborg,	Sweden) Densely	sintered Veneers,	crowns,	anterior	FPDP

Zirconia
Yttrium	tetragonal	
zirconia	polycrystals	
(ZrO2	stabilized	by	
Y2O3)

Lava	(3M	ESPE,	St.	Paul,	Minn) Green	milled,	sintered Crowns,	FPDP
Cercon	(Dentsply	Ceramco,	York	Pa) Green	milled,	sintered Crowns,	FPDP
DC‑Zirkon	(DCS	Dental	AG,	Allschwil,	Switzerland) Milled Crowns,	FPDP
Denzir	(Decim	AB,	Skelleftea,	Sweden) Milled Onlays,	3/4	crowns,	crowns
Procera	(Nobel	Biocare	AB) Densely	sintered,	milled Crowns,	FPDP,	implant	abutments

FPDP:	Fixed	partial	denture	prosthesis
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litHium disilicAte ReinfORced ceRAmics

A	 lithium	 disilicate	 CAD/CAM	 ceramic	 IPS™	 e.	 max	
CAD	 (Ivoclar	Vivadent)	was	 introduced	 in	 2006	 and	 is	 a	
chairside	monolithic	 restorative	material.	Lithium	disilicate	
(Li2SiO5)	ceramics	have	their	flexural	strength	between	350	
MPa‑450	MPa.	This	is	higher	than	that	of	leucite‑reinforced	
dental	ceramics.[21]	The	blocks	are	manufactured	in	a	process	
based	on	the	so‑called	pressure‑casting	procedure	used	in	glass	
industry.	They	are	available	in	A‑D	and	Bleach	shades	as	well	
as	 in	3	 translucencies	(one	of	which	is	of	medium	opacity)	
and	are	supplied	in	a	precrystallized,	so‑called,	blue	state.[21,22]	
The	material	 has	been	 recommended	 for	 use	 in	 fabricating	
inlays,	 onlays,	 veneers,	 anterior	 and	 posterior	 crowns,	 and	
implant‑supported	crowns.[23]

Alumina‑Based	Ceramics:	The	 In‑Ceram	Alumina	 system	
(Vita	Zahnfabrik,	Bad	Sackingen	Germany)	was	developed	
by	 Sadoun	 in	 1984	 and	 uses	 the	 addition	 of	 alumina	 to	
feldspathic	glass	to	create	high	temperature‑sintered	alumina	
glass‑infiltrated	copings.[24]	InCeram	Alumina	has	a	flexural	
strength	of	236–600	MPa.[25‑27]	Clinically,	InCeram	Alumina	
can	 be	 used	 to	 fabricate	 anterior	 and	 posterior	 crowns.	
The	 materials	 can,	 also,	 be	 fabricated	 by	 CAD/CAM	
machination	 since	 1993.	CAD/CAM	 InCeram™	Alumina	
has	 been	 recommended	 for	 single	 anterior	 and	 posterior	
crowns.	In‑Ceram	Spinel,	a	magnesium	aluminate	(MgAl04)	
spinel,	replaces	alumina	as	the	major	crystalline	phase	with	
traces	 of	 alumina	 improving	 the	 translucency	 of	 the	 final	
restoration	because	of	 the	crystalline	structure	of	 the	spinel	
and	 a	 relatively	 lower	 index	 of	 refraction	 compared	with	
alumina.[28]	In‑Ceram	Spinell,	therefore,	has	superior	esthetics	
over	 InCeram	Alumina;	 however,	 it	 is	 not	 as	 strong	 as	 the	
alumina‑based	material.	The	 flexural	 strength	 is	 lower	 at	
377	MPa,	and	the	clinical	indications	are	for	inlays	only.[29]	
In‑Ceram	Zirconia	(VITA	Zahnfabrik)	is,	also,	a	modification	of	
the	original	In‑Ceram	Alumina	system	with	an	addition	of	35%	
partially	stabilized	zirconia	(PSZ)	oxide	to	the	slip	composition	
to	strengthen	the	ceramic.[30]	It	exhibits	a	flexural	strength	of	
421–800	MPa.[25‑27]	It	has	been	successfully	used	for	posterior	
three‑unit‑fixed	bridges.[31,32]	With	the	advent	of	technology,	
newer	 polycrystalline	 ceramics	 have	 been	 developed	 such	
as	alumina	and	zirconia	which	have	no	intervening	etchable	
glassy	matrix	 and	 all	 the	 crystals	 are	 densely	 packed	 into	
regular	 arrays	 and	 then	 sintered	 improving	 the	mechanical	
properties.[5,20]	Procera/AllCeram	(Nobel	Biocare,	Goteborg,	
Sweden)	was	first	described	by	Andersson	and	Odén.[33]	The	
Procera	AllCeram	crown	 is	 composed	of	 densely	 sintered,	
high‑purity	aluminum	oxide	core	combined	with	compatible	
AllCeram	 veneering	 porcelain.[34]	 This	 ceramic	material	
contains	99.9%	alumina,	and	its	hardness	is	one	of	the	highest	
among	the	ceramics	used	in	dentistry.[35]	Procera	AllCeram	can	
be	used	for	anterior	and	posterior	crowns,	veneers,	onlays,	and	
inlays.	A	unique	feature	of	the	Procera	system	is	the	ability	of	
the	Procera	scanner	to	scan	the	surface	of	the	prepared	tooth	
and	transmit	the	data	to	a	milling	unit	to	produce	an	enlarged	
die	 through	 a	CAD/CAM	process,	 thus,	 compensating	 for	

the	sintering	shrinkage.[35]	Some	studies	confirm	that	Procera	
restorations	 have	 high	 strength	 and	 excellent	 longevity.[36]	
The	mean	flexural	strength	for	Procera	alumina	and	zirconia	
is	639	and	1158	MPa,	respectively.[37]	A	similar	CAD/CAM	
ceramic	 is	 the	Vita™	InCeram	AL	cubes	 (Vita	Zahnfabrik,	
Bad	Sackingen,	Germany)	 introduced	 in	2005.	However,	 it	
should	 be	 differentiated	 from	 InCeram™	Classic	Alumina	
which	has,	also,	been	referred	to	as	InCeram™	or	InCeram™	
Alumina	in	that	this	is	glass‑free	polycrystalline	in	structure	
and	manufactured	by	a	different	process.[38]

ziRcOniA‑BAsed ceRAmics

Zirconia	was	first	discovered	by	a	Chemist	Martin	Klaproth	
in	1789.[39]	Zirconia	does	not	occur	in	nature	in	a	pure	state.	
It	 can	be	 found	 in	 conjunction	with	 silicate	oxide	with	 the	
mineral	name	Zircon	(ZrO2	×	SiO2)	or	as	a	free	oxide	(ZrO2)	
with	the	mineral	name	Baddeleyite.[40]	ZrO2	is	a	polymorphic	
material	and	occurs	in	three	forms:	monoclinic,	tetragonal,	and	
cubic.	The	monoclinic	phase	is	stable	at	room	temperatures	
up	to	1170°C,	tetragonal	at	temperatures	of	1170°C–2370°C,	
and	 the	 cubic	 at	 over	 2370°C.[41]	With	 the	 addition	 of	
stabilizing	oxides	such	as	ceria	(CeO2),	magnesia	(MgO),	or	
yttria	(Y2O3),	a	multiphase	material	known	as	PSZ	is	formed	
at	room	temperature	with	cubic	crystals	as	the	major	phase	
and	monoclinic	and	tetragonal	crystals	as	the	minor	phases.[40]	
However,	when	zirconium	oxide	is	heated,	noticeable	changes	
in	volume	occur	due	to	transformation	of	zirconium	oxide	from	
monoclinic	to	tetragonal	phase	with	this	transformation	leading	
to	5%	decrease	in	the	volume;	conversely,	a	3%–4%	increase	
in	the	volume	is	observed	during	the	cooling	process.[42]	This	
mechanism	is	known	as	transformation	toughening.[40]

Yt t r i a ‑Par t i a l ly 	 S tab i l i zed 	 Te t ragona l 	 Z i rcon ia	
Polycrystal	 (3Y‑TZP):	Yttria‑Partially	Stabilized	Tetragonal	
Zirconia	Polycrystal	(3Y‑TZP)	consists	of	an	array	of	PSZ	
with	 a	 2–4	mol%	 yttria	 oxide.	 In	 1977,	 it	 was	 reported	
that	 ZrO2	 fine	 grain	 (usually	 ≤0.05	 mm)	 with	 small	
concentrations	 of	Y2O3	 stabilizers	 could	 contain	 up	 to	
98%	 of	 the	metastable	 tetragonal	 phase	 after	 sintering.	
The	main	 feature	 of	 this	microstructure	 is	 to	 be	 formed	
by	 tetragonal	 grains	 of	 uniform	diameter	 in	 the	 order	 of	
nanometers,	 sometimes,	 combined	with	 a	 small	 fraction	
of	 the	 cubic	 phase.	Yttria‑Partially	Stabilized	Tetragonal	
Zirconia	Polycrystal	was	first	applied	in	the	medical	field	
of	 orthopedics	 with	 significant	 success	 due	 to	 its	 good	
mechanical	 properties	 and	 biocompatibility.[40]	 In	 dental	
applications,	it	is	fabricated	with	microstructures	containing	
small	grains	(0.2–0.5	mm		in	diameter)	depending	on	the	
sintering	 temperature	which	 avoids	 the	 phenomenon	 of	
structural	deterioration	or	destabilization	in	the	presence	of	
saliva	slowing	the	growth	of	subcritical	cracks.[39]

mAgnesium pARtiAlly stABilized ziRcOniA

The	microstructure	of	Mg‑PSZ	consists	of	an	array	of	cubic	
zirconia	 partially	 stabilized	 by	 8–10	mol%	of	magnesium	
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oxide.	Due	 to	 difficulty	 in	 obtaining	 free	 silica	Mg‑PSZ	
precursors	(SiO2),	magnesium	silicates	can	form	a	low	content	
of	magnesia	 favoring	 the	 transformation	 from	tetragonal	 to	
monoclinic	phase	resulting	in	lower	mechanical	properties	and	
stability	of	the	material.[39]	The	material	has	not	been	widely	
used	and	an	example	is	the	Denzir‑M™	(Dentronic,	Skellefteå,	
Sweden)	for	hard	machining.

Ceria	 Stabilized	 Zirconia/Alumina	 Nano‑Composite	
(Ce‑TZP/A):	 Recently,	 a	 tough	 and	 strong	 material,	
Ce‑TZP/A,	 has	 been	 developed.[43]	 This	material	 has	 an	
interpenetrated	 intragranular	 nanostructure	 in	which	 either	
nanometer‑sized	Ce‑TZP	or	Al2O3	particles	are	located	within	
the	 submicron‑sized	Al2O3	or	Ce‑TZP	grains,	 respectively.	
Several	studies	have	reported	that	the	Ce‑TZP/A	has	shown	
significantly	higher	mechanical	strength	than	Y‑TZP[25,40,44‑46]	
and	 has	 complete	 resistance	 to	 low‑temperature	 aging	
degradation	 in	 water‑based	 conditions	 such	 as	 the	 oral	
environment.[47]

cOnclusiOn

Advances	in	digital	dentistry	and	CAD/CAM	technology	have	
catalyzed	the	development	of	esthetic	all	ceramic	restorations	
with	superior	biomechanical	properties.	Although	none	of	these	
materials	exhibit	ideal	clinical	properties,	intense	research	is	
under	way	 to	 promote	 the	 strength,	 esthetics,	 dimensional	
accuracy	and	the	ability	of	these	restorations	to	reliably	bond	
to	varying	dental	substrates
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