The Intersection of Genetic and Molecular Biology in Oral Potentially Malignant Disorders: Identifying Key Biomarkers and Pathways for Clinical Intervention
Review Article
DOI:
https://doi.org/10.56501/intjhistopatholinterpret.v13i2.1133Keywords:
biofilm, oral squamous cell carcinoma, microbiome, dysbiosis, inflammationAbstract
Oral Potentially Malignant Disorders (OPMDs) and oral cancer, as an intricate interplay of genetic and molecular factors, have been a central area of study. Researchers have sought to delineate key biomarkers and pathways for potential clinical intervention. The understanding of these genetic and molecular factors is crucial for informed decision-making and patient care. Studies have demonstrated that OPMDs create a field of specific abnormalities known as 'oral field cancerization,' wherein genetically altered cells can predispose to malignancies in multiple oral cavity areas. Molecular investigations have revealed both overexpressed and underexpressed genes in precancerous oral lesions, shedding light on the involvement of oncogenic pathways and proinflammatory conditions in the progression of oral cancer. Furthermore, bioinformatics analyses have brought to the fore crucial genes, such as IRF4, CCR7, TNFRSF17, CD27, and S1PR4, which play substantial roles in oral squamous cell carcinoma and may serve as prognostic markers and potential therapeutic targets. The integration of genetic risk scores with environmental factors has demonstrated promise in identifying high-risk individuals for oral squamous cell carcinoma, underscoring the significance of early screening and intervention strategies to mitigate the incidence of oral cancer. A thorough comprehension of these alterations is essential for prompt evaluation, prognosis, and the creation of focused treatments. This article delves into the genetic and molecular profiling of OPMDs, emphasizing key biomarkers, pathways, and the clinical implications of these discoveries.
References
Farah CS, Woo SB, Zain RB, Sklavounou A, McCullough MJ, Lingen M. Oral cancer and oral potentially malignant disorders. Int J Dent. 2014;2014:853479. doi: 10.1155/2014/853479. Epub 2014 May 7. PMID: 24891850; PMCID: PMC4033498.
Shi Y, Su C, Ding T, Zhao H, Wang Y, Ren Y, Wu L, Zhang Q, Liang J, Sun S, Wang J. Manganese suppresses the development of oral leukoplakia by activating the immune response. Oral Diseases. 2024 Mar;30(2):462-76.
Gillenwater A, Papadimitrakopoulou V, Richards-Kortum R. Oral premalignancy: new methods of detection and treatment. Curr Oncol Rep. 2006 Mar;8(2):146-54. doi: 10.1007/s11912-006-0050-4. PMID: 16507225; PMCID: PMC2773158.
Cao M, Shi E, Wang H, Mao L, Wu Q, Li X, Liang Y, Yang X, Wang Y, Li C. Personalized Targeted Therapeutic Strategies against Oral Squamous Cell Carcinoma. An Evidence-Based Review of Literature. Int J Nanomedicine. 2022 Sep 15;17:4293-4306. doi: 10.2147/IJN.S377816. PMID: 36134201; PMCID: PMC9484769.
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci. 2023 Sep 22;15(1):44. doi: 10.1038/s41368-023-00249-w. PMID: 37736748; PMCID: PMC10517027.
Dixon K, Kopras E. Genetic alterations and DNA repair in human carcinogenesis. Semin Cancer Biol. 2004 Dec;14(6):441-8. doi: 10.1016/j.semcancer.2004.06.007. PMID: 15489137.
Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. doi: 10.1177/1947601911408889. PMID: 21779514; PMCID: PMC3135636.
Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 2011 Aug 1;10(15):2497-503. doi: 10.4161/cc.10.15.16776. Epub 2011 Aug 1. PMID: 21775818; PMCID: PMC3685613.
Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018 Nov;28(11):911-925. doi: 10.1016/j.tcb.2018.07.002. Epub 2018 Jul 27. PMID: 30061045; PMCID: PMC6689321.
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021 Jul 9;6(1):254. doi: 10.1038/s41392-021-00648-7. PMID: 34238917; PMCID: PMC8266832.
Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer. 2007 Apr 2;6:24. doi: 10.1186/1476-4598-6-24. PMID: 17407548; PMCID: PMC1851974.
Alao JP, Stavropoulou AV, Lam EW, Coombes RC, Vigushin DM. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells. Mol Cancer. 2006 Feb 20;5:8. doi: 10.1186/1476-4598-5-8. PMID: 16504004; PMCID: PMC1397858.
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 2016 Dec;94(12):1313-1326. doi: 10.1007/s00109-016-1475-3. Epub 2016 Oct 2. PMID: 27695879; PMCID: PMC5145738.
Myong NH. Cyclin D1 overexpression, p16 loss, and pRb inactivation play a key role in pulmonary carcinogenesis and have a prognostic implication for the long-term survival in non-small cell lung carcinoma patients. Cancer Res Treat. 2008 Jun;40(2):45-52. doi: 10.4143/crt.2008.40.2.45. Epub 2008 Jun 30. PMID: 19688048; PMCID: PMC2697490.
LaPak KM, Burd CE. The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res. 2014 Feb;12(2):167-83. doi: 10.1158/1541-7786.MCR-13-0350. Epub 2013 Oct 17. PMID: 24136988; PMCID: PMC3944093.
Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol. 2021 Nov;76:120-131. doi: 10.1016/j.semcancer.2021.05.004. Epub 2021 May 9. PMID: 33979676; PMCID: PMC8576067.
Cen L, Carlson BL, Schroeder MA, Ostrem JL, Kitange GJ, Mladek AC, Fink SR, Decker PA, Wu W, Kim JS, Waldman T, Jenkins RB, Sarkaria JN. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro Oncol. 2012 Jul;14(7):870-81. doi: 10.1093/neuonc/nos114. Epub 2012 Jun 18. PMID: 22711607; PMCID: PMC3379801.
Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022 Mar 1;36(5-6):278-293. doi: 10.1101/gad.349431.122. PMID: 35318271; PMCID: PMC8973847.
Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J Appl Genet. 2019 Nov;60(3-4):329-334. doi: 10.1007/s13353-019-00516-9. Epub 2019 Aug 30. PMID: 31468363; PMCID: PMC6803590.
Al Aboud NM, Tupper C, Jialal I. Genetics, Epigenetic Mechanism. [Updated 2023 Aug 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing;2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532999/
Lao TD, Nguyen TN, Le TAH. Promoter Hypermethylation of Tumor Suppressor Genes Located on Short Arm of the Chromosome 3 as Potential Biomarker for the Diagnosis of Nasopharyngeal Carcinoma. Diagnostics (Basel). 2021 Aug 3;11(8):1404. doi: 10.3390/diagnostics11081404. PMID: 34441339; PMCID: PMC8391633.
Liang, B., Wang, Y., Xu, J., Shao, Y., & Xing, D. (2023). Unlocking the potential of targeting histone-modifying enzymes for treating IBD and CRC. Clinical epigenetics, 15(1), 146. https://doi.org/10.1186/s13148-023-01562-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hema Shree K
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.